Accelerated Iron Evolution in Quaternary Red Soils through Anthropogenic Land Use Activities

Author:

Zhang Cheng-Cheng1,Sun Zhong-Xiu1,Jiang Ying-Ying2,Duan Si-Yi1

Affiliation:

1. College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China

2. Shenyang Institute of Technology, Shenyang 113122, China

Abstract

Iron in soil exists in various valence states and is prone to changes with alterations in soil environmental conditions. Its migration and transformation are crucial for soil formation and understanding soil evolution. This study focuses on Quaternary red soils found in woodland, sparse forest grassland, grassland, and cultivated land located in the semi-humid region of the middle temperate zone. For comparison, buried Quaternary red soil was also examined. A soil reconstruction model was used to quantitatively calculate the variation of different forms of iron in order to analyze various forms of iron composition, migration, and transformation within the soil profile, as well as the evolutionary traits of Quaternary red soils influenced by diverse land use activities. This study found that after exposure and use, iron from the topsoil of buried Quaternary red soil migrated to the subsoil, altering the iron distribution. Free iron and crystalline oxides decreased in the topsoil but increased in specific subsoil layers, with woodland and grassland showing the most significant changes. Silicate-bound iron pooled in the soil weathered to form free iron under different land uses, and poorly crystalline iron oxides transformed into crystalline oxides, with grassland exhibiting the highest transformation intensity. Conversion processes predominated over iron migration in the Quaternary red soils. The evolution of Quaternary red soils can be divided into three stages, marked by changes in iron composition and crystallization due to anthropogenic land use activities. Initially, during 140−94 ka BP, iron composition was stable. Then, between 94–24 ka BP, plant decomposition formed iron–metal complexes, releasing and crystallizing poorly crystalline iron oxides. Finally, from 24 ka BP to the present, anthropogenic activities intensified, increasing the formation and conversion rates of these oxides. This study quantifies iron migration and transformation in Quaternary red soils, providing insights for sustainable soil management, especially in regions where human activities have accelerated iron evolution. Based on these findings, the following policy recommendations are proposed: implement sustainable land use practices, encourage land management strategies that preserve natural vegetation, promote research on soil management techniques, develop and implement regulatory policies, and support educational programs to maintain the health and stability of Quaternary red soils, particularly in regions prone to accelerated iron evolution due to anthropogenic activities.

Funder

National Natural Science Foundation of China

“Xing Liao Talent Plan” Youth Top Talent Support Program

Applied Basic Research Program of Liaoning Province

Publisher

MDPI AG

Reference56 articles.

1. Iron speciation in soil size fractions under different land uses;Giannetta;Geoderma,2022

2. The fate of Arsenic associated with the transformation of iron oxides in soils: The mineralogical evidence;Gao;Sci. Total Environ.,2024

3. Iron nutrition of plants;He;Prog. Soil Sci.,1986

4. Influence of iron redox cycling on organo-mineral associations in Arctic tundra soil;Herndon;Geochim. Cosmochim. Acta,2017

5. Effects of Water Management on the Transformation of Iron Oxide Forms in Paddy Soils and Its Coupling with Changes in Cadmium Activity;Li;Environ. Sci.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3