Refined Evaluation of Soil Quality Sustainability in the Main Grain-Producing Areas of Heilongjiang Province

Author:

Zhou Yan12,Liu Jiazhe3,Li Haiyan1,Sun Nan12,Li Mo1245ORCID

Affiliation:

1. School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin 150030, China

2. Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin 150030, China

3. College of Engineering, Northeast Agricultural University, Harbin 150030, China

4. Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin 150030, China

5. National Key Laboratory of Smart Technology and System, Harbin 150030, China

Abstract

An evaluation of soil quality sustainability can support decision making for the sustainable use of land resources. However, certain current problems associated with these evaluations remain unaddressed, e.g., the evaluation indicators do not fully reflect soil quality risks and the evaluation scale is not sufficiently small. In this study, 25,000 spatial grids of dimensions 3 km × 3 km are used to divide the major grain-producing regions in China, namely, the Sanjiang Plain and the Songnen Plain of Heilongjiang. Then, the soil erosion modulus, nutrient balance index, soil organic carbon (SOC) storage, heavy metal soil pollution index and crop productivity are calculated for each grid using the RULSE model, nutrient balance index model, soil type method, geoaccumulation index method and mechanism method, respectively. A spatial grid cluster analysis method is used to thoroughly evaluate and analyze the sustainability of soil quality in each grid. The results show that the overall soil status of the study area is good. The soil and water conservation levels are high, the soils show low levels of contamination, the crop production potential is high and the ratio of highly sustainable to moderately sustainable soils is approximately 2:1. Only 2.74% of the land is rated extremely unsustainable and needs to be restored to a basic level of productivity before subsequent functional restoration can be carried out. This study provides a new method for the fine-scale evaluation of soil quality and contributes to the management of land resources.

Funder

National Natural Science Foundation of China

Humanity and Social Science general project of Ministry of Education of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference54 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3