Updates and Prospects: Morphological, Physiological, and Molecular Regulation in Crop Response to Waterlogging Stress

Author:

Yang Lu12,Li Na3,Liu Yang1,Miao Pengfei1,Liu Ji1ORCID,Wang Zhi1234ORCID

Affiliation:

1. National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China

2. Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China

3. Sanya Institute, Zhengzhou University, Sanya 572024, China

4. Hainan Yazhou Bay Seed Lab., Sanya 572024, China

Abstract

With the frequent occurrence of extreme weather such as typhoons and rainstorms, waterlogging has become one of the most important threats to global crop growth and production. Waterlogging limits plants’ access to oxygen and light, leading to disadvantageous changes in metabolism to disturb plant growth and development. To escape the damage of hypoxia or promote the diffusion of oxygen to submerged organs, plants respond to waterlogging stress by regulating their morphological structure, photosynthesis, respiration, energy metabolism, and endogenous plant hormone biosynthesis/signal transduction. The adventitious roots (AR), aerenchyma, and stem internode are the major target structure for waterlogging adaptation. The molecular mechanism of crop survival under waterlogging conditions and the key genes related photosynthesis, reactive oxygen species (ROS) homeostasis, and ethylene signal transduction are reviewed. We also elucidated recent advances in the study of interactions between various regulatory pathways and emphasized the important role of stress memory and cross-stress mechanisms in plant response to abiotic stress, indicating the importance of epigenetic modifications. On the basis of above, the research direction and focus of plants coping with waterlogging stress in the future are proposed. This review provides rich genetic resources and a theoretical basis for improving the genetic breeding of crop resistance to waterlogging.

Funder

CAAS

Hainan Yazhou Bay Seed Lab

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3