Bacillus Co-Inoculation Alleviated Salt Stress in Seedlings Cucumber

Author:

Qi Ruixue,Lin Wei,Gong Kaixuan,Han Zeyu,Ma Hui,Zhang Miao,Zhang Qiannan,Gao Yanming,Li Jianshe,Zhang Xueyan

Abstract

Soil salinity has become a serious threat to crop growth and productivity and has aggravated the gap between sustainable food supply and population growth. Application of plant growth-promoting rhizobacteria (PGPR) has emerged as a novel way of alleviating the harmful effects of salt stress and improving soil nutrients. The aim of this study was to study the effects of exposure cucumber seedlings at one co-inoculation of Bacillus licheniformis and B. subtilis, a mitigation of salt stress in cucumber seedlings. In this study, we isolated salt tolerant (NX-3 and NX-4) and growth-promoting (NX-48, NX-59, and NX-62) bacteria from the rhizosphere of cucumber. NX-3 and NX-59 were identified as B. licheniformis, and NX-4, NX-48 and NX-62 were identified as B. subtilis. Under salt stress, relative to non-inoculation, co-inoculation with B. licheniformis and B. subtilis increased stem diameter and plant fresh weight. Moreover, the concentration of substrate available phosphorus increased (except for NX4-59). The catalase and sucrase activities of NX4-62 were the highest. Meanwhile, NX3-62 and NX3-59 had the highest phosphorus content and NX3-59 had the highest urease activities. Comprehensive analysis indicated that NX4-62 and NX3-59 showed the best effect on promoting cucumber seedlings growth, activating substrate nutrients, and alleviate salt stress in seedlings of cucumber.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3