Using Geospatial Information to Map Yield Gain from the Use of Azospirillum brasilense in Furrow

Author:

Martins George Deroco1ORCID,Xavier Laura Cristina Moura2,de Oliveira Guilherme Pereira3,de Lourdes Bueno Trindade Gallo Maria4ORCID,de Abreu Júnior Carlos Alberto Matias2,Vieira Bruno Sérgio5ORCID,Marques Douglas José5ORCID,da Silva Filipe Vieira1

Affiliation:

1. Instutute of Geography, Unversidade Federal de Uberlândia, Monte Carmelo 38500-000, BR-MG, Brazil

2. Post Graduate Program in Agriculture and Geospatial Information, Institute of Agrarian Sciences, Unversidade Federal de Uberlândia, Monte Carmelo 38500-000, BR-MG, Brazil

3. Lallemand Soluções Biológicas LTDA, Patos de Minas 38706-420, BR-MG, Brazil

4. Cartography Departament, Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista, São Paulo 19060-900, Brazil

5. Institute of Agrarian Sciences, Unversidade Federal de Uberlândia, Monte Carmelo 38500-000, BR-MG, Brazil

Abstract

The application of biological products in agricultural crops has become increasingly prominent. The growth-promoting bacterium Azospirillum brasilense has been used as an alternative to promote greater yield in maize crops. In the context of precision agriculture, interpreting geospatial data has allowed for monitoring the effect of the application of products that increase the yield of corn crops. The objective of this work was to evaluate the potential of Kriging techniques and spectral models through images in estimating the gain in yield of maize crop after applying A. brasilense. Analyses were carried out in two commercial areas treated with A. brasilense. The results revealed that models of yield prediction by Kriging with a high volume of training data estimated the yield gain with a root-mean-square error deviation (RMSE%), mean absolute percentage error (MAPE%), and R2 to be 6.67, 5.42, and 0.88, respectively. For spectral models with a low volume of training data, yield gain was estimated with RMSE%, MAPE%, and R2 to be 9.3, 7.71, and 0.80, respectively. The results demonstrate the potential to map the spatial distribution of productivity gains in corn crops following the application of A. brasilense.

Funder

Lallemand Plant Care

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3