Identification of Superior Soybean Cultivars through the Indication of Specific Adaptabilities within Duo-Environments for Year-Round Soybean Production in Northeast Thailand

Author:

Sritongtae Chompoonut,Monkham Tidarat,Sanitchon Jirawat,Lodthong Sanit,Srisawangwong Sittipong,Chankaew SompongORCID

Abstract

The soybean (Glycine max (L.) Merrill) is one of the world’s most important sources of food, feed, and fuel due to its high protein value and oil content. However, there exists a lack of soybean genotypes suitable for growth in diverse conditions as soybean breeders have developed their own varieties for specific purposes within their own unique environments. This, therefore, creates the need for soybean genotypes for different environments. The objectives of the experiment described herein were to determine the genotype magnitude through the environment interaction (GxE) of new soybean breeding lines, thereby identifying widely and/or specifically adapted genotypes under ten of Northeast Thailand’s typical environmental conditions from 2017 to 2019. Analyses of the environment (E) and GxE captured a large portion of the total sum of squares of grain yield and related traits, which demonstrated the influence of the two factors in evaluating soybean genotypes, thereby identifying the need for response analysis to identify superior genotypes in each environment. Based on the grain yields of three environments, four genotype groups were clustered. Within the high grain yield environment (EG1), we identified five genotypes with higher yield performance (35*sj-32 (3356 kg/ha), 38D*a-16 (3138 kg/ha), 42*Ly-50-2 (3122 kg/ha), 35*Lh-7 (3116 kg/ha), and 223*Lh-85 (3073 kg/ha)) of KK (3132 kg/ha), the recommended soybean variety for Northeast Thailand, than that of the CM60 (2606 kg/ha). These five top-yielding genotypes, however, produced unstable grain yields through varied environments as they were each narrowly adapted to a specific environment. Moreover, those genotypes may be grown within a rotational cropping system in a duo-environment (wet and dry season) of soybean production in Thailand’s northeast region.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3