Modeling Hairy Vetch and Cereal Rye Cover Crop Decomposition and Nitrogen Release

Author:

Dhakal MadhavORCID,Singh Gurbir,Cook Rachel L.,Sievers Taylor

Abstract

Empirical models could help us to understand the process of plant residue decomposition and nutrient release into the soil. The objective of this study was to determine an appropriate model to describe the decomposition of hairy vetch (Vicia villosa Roth) and cereal rye (Secale cereale L.) cover crop (CC) residue and nitrogen (N) release. Data pertaining to above and belowground CC residue mass loss and N release for up to 2633 cumulative decomposition degree days (112 d) after litterbag installation were obtained from two cropping system experiments, a 1-yr study conducted in 2015 and a 2-yr study during 2017 to 2018 in the humid subtropical environment of southern IL, USA. Six exponential and two hyperbolic models were fit to percent mass and N remaining data to find the one with minimum Akaike information criterion (AIC) and residual sum of squares. Modified three-parameter single exponential and two- or three-parameter hyperbolic models best met the assumed criteria of selection for above and belowground CC residue, respectively. Fitting a double exponential model to combined data for percent mass and N remaining identified two mass and N pools, a fast and a slow pool with different rate constants. A five-parameter double exponential with an asymptote met the preset criteria and passed all tests for normally distributed population, constant variance, and independence of residuals at α = 0.05 when fit to combined data of hairy vetch shoot mass and N remaining. However, a two-parameter hyperbolic and three-parameter asymptotic hyperbolic model provided the best fit to a combined data of cereal rye shoot mass and N remaining, respectively. Both hyperbolic decay models showed a good fit for belowground mass decomposition and N release for both CCs. Cereal rye had a poorer fit than hairy vetch for mass and N remaining of both above and belowground mass. The best-selected decay models can be used to estimate the decomposition and N release rates of hairy vetch and cereal rye above and belowground residue in a similar environment.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3