Rapid and Accurate Prediction of Soil Texture Using an Image-Based Deep Learning Autoencoder Convolutional Neural Network Random Forest (DLAC-CNN-RF) Algorithm

Author:

Zhao ZhuanORCID,Feng Wenkang,Xiao Jinrui,Liu Xiaochu,Pan Shusheng,Liang ZhongweiORCID

Abstract

Soil determines the degree of water infiltration, crop nutrient absorption, and germination, which in turn affects crop yield and quality. For the efficient planting of agricultural products, the accurate identification of soil texture is necessary. This study proposed a flexible smartphone-based machine vision system using a deep learning autoencoder convolutional neural network random forest (DLAC-CNN-RF) model for soil texture identification. Different image features (color, particle, and texture) were extracted and randomly combined to predict sand, clay, and silt content via RF and DLAC-CNN-RF algorithms. The results show that the proposed DLAC-CNN-RF model has good performance. When the full features were extracted, a very high prediction accuracy for sand (R2 = 0.99), clay (R2 = 0.98), and silt (R2 = 0.98) was realized, which was higher than those frequently obtained by the KNN and VGG16-RF models. The possible mechanism was further discussed. Finally, a graphical user interface was designed and used to accurately predict soil types. This investigation showed that the proposed DLAC-CNN-RF model could be a promising solution to costly and time-consuming laboratory methods.

Funder

The National Natural Science Foundation of China

the Science and Technology Innovative Research Team Program in Higher Educational Universities of Guangdong Province

Special Research Projects in the Key Fields of Guangdong Higher Educational Universities

Natural Science Foundation of Guangdong Province

the Tertiary Education Scientific research project of Guangzhou Municipal Education Bureau

Guangzhou University Research Project

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3