Pre-Symptomatic Disease Detection in the Vine, Chrysanthemum, and Rose Leaves with a Low-Cost Infrared Sensor

Author:

Vagelas IoannisORCID,Papadimos Athanasios,Lykas Christos

Abstract

Thermography is a technique based on infrared imaging, which is used nowadays to detect plants under stress caused by biotic and abiotic factors. In many cases, temperature changes have already been correlated with pathogen attacks. In this sense, thermography offers the ability of early disease detection in plant pathology. In this work, a low-cost AMG8833 Grind-Eye infrared camera combined with a 1080P RGB web camera was used to develop an integrated infrared and RGB imaging system, to record temperature changes on vine, chrysanthemum, and rose plant leaf surfaces. Vine and chrysanthemum leaves were infected with Phomopsis viticola and Septoria ssp. respectively, respectively, whereas rose plants leaves were infected with Colletotrichum spp. as well as with Podosphaera pannosa. Measurements were performed using the integrated imaging system on infected and uninfected leaves, as well as on PDA plates with active and non-active mycelium. According to the results, vine leaf tissue infected with P. viticola and rose plants leaf tissue infected with P. pannosa had a pre-symptomatic (four days after infection) decrease in temperature up to 1.6 and 1.1 °C, respectively, compared with uninfected tissue. In contrast chrysanthemum leaf tissue infected with Septoria ssp. and rose plant leaf tissue infected with Colletotrichum spp. had a pre-symptomatic (four days after infection) increased temperature up to 1.1 °C and 1.0 °C, respectively, compared with uninfected tissue. In vitro measurements showed that the active fungi mycelium had approximately 1.1 to 2.1 °C lower temperature than the non-active mycelium. The results above show that the integrated infrared and RGB imaging system developed in this work can be used to detect early disease infection before visible symptoms appeared, facilitating the decision-making process.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3