Calculation Method of Canopy Dynamic Meshing Division Volumes for Precision Pesticide Application in Orchards Based on LiDAR

Author:

Wang Mengmeng12,Dou Hanjie13,Sun Hongyan2,Zhai Changyuan13ORCID,Zhang Yanlong13,Yuan Feixiang13

Affiliation:

1. Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

2. School of Science, China University of Geosciences, Beijing 100083, China

3. Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

Abstract

The canopy volume of fruit trees is an important input for the precise and varying application of pesticides in orchards. The fixed mesh division method is mostly used to calculate canopy volumes with variable target-oriented spraying. To reduce the influence of the working speed on the detection accuracy under a fixed mesh width division, the cuboid accumulation of divided areas (CADAs), which is a light detection and ranging (LiDAR) online detection method for a fruit tree canopy volume based on dynamic mesh division, is proposed in this paper. In the method, the area is divided according to the number of unilateral nozzles of the sprayer in the canopy height direction of the fruit tree, and the mesh width is dynamically adjusted according to the change in the working speed in the moving direction of the sprayer. To verify the accuracy and applicability of the method, the simulation canopy and peach tree canopy detection experiments were carried out. The test results show that the CADA method can be used to calculate the contour and volume of the canopy. However, detection errors easily occur at the edge of the canopy, resulting in a detection error of 8.33% for the simulated canopy volume. The CADA method has a good detection accuracy under different moving speeds and fruit tree canopy sizes. At a speed of 1 m/s, the detection accuracy of the canopy volume reaches 99.18%. Compared with the existing canopy volume calculation methods based on the alpha-shape algorithm and canopy meshing-profile characterization (CMPC), the detection accuracy of the CADA method is 2.73% and 7.22% better, respectively. This method can not only reduce the influence of the moving speed on the detection accuracy of the canopy volume, but also improve the detection accuracy. Thus, this method can provide theoretical support for the research and development of target-oriented variable spraying control systems for orchards.

Funder

National Key Research and Development Plan Project

Laboratory Construction Project of 2023 National Engineering Research Center for Intelligent Equipment in Agriculture

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3