Enhanced N2O Emissions from Winter Wheat Field Induced by Winter Irrigation in the North China Plain

Author:

An Yunhao,Gu ZheORCID,Jiao Xiyun,Wei Qi,Xu JunzengORCID,Liu Kaihua

Abstract

Winter irrigation is important for wheat in meeting crop water requirements in spring, but it alters soil moisture dynamics and affects soil N2O production and emission. To assess the effects of winter irrigation on soil N2O emissions in a winter wheat field, an in situ experiment was conducted from 1 October 2019 to 1 March 2020 with one control treatment (CK) and five levels of winter irrigation quantities (irrigated to 60%, 70%, 80%, 90%, 100% of the soil water holding capacity, namely WHC60–WHC100, respectively). The results showed that winter irrigation had an impact on soil N2O emission. The emission peaks were not investigated immediately after winter irrigation, but at two days after, which were increased by 4.3–17.0 μg·m−2·h−1 under WHC60–100 treatments compared to the CK. The cumulative N2O emissions after winter irrigation from WHC60–100 were 1.1–3.9 times higher than that of CK, indicating that the cumulative N2O emission has an increase trend with the increase of soil water content regulated by irrigations. Pearson correlation analysis showed that the correlation between soil N2O flux and soil temperature were moderate with correlation coefficients of about 0.65. While the correlation between soil N2O flux and soil water content was poor during the investigate winter season with correlation coefficients ranging between 0.08 and 0.25. Future studies should focus on the general N2O emission responses to winter irrigation and environmental factors with the support of experiment data from several winter seasons.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Belt and Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference38 articles.

1. Changes in atmospheric constituents and in radiative forcing;Forster,2007

2. Summary for Policymakers. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystemshttps://www.ipcc.ch/srccl/

3. Changes in snow cover alter nitrogen cycling and gaseous emissions in agricultural soils

4. Reviews and syntheses: Review of causes and sources of N<sub>2</sub>O emissions and NO<sub>3</sub> leaching from organic arable crop rotations

5. The effects of freeze-thaw cycles at different initial soil water contents on soil erodibility in Chinese Mollisol region

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3