Evaluating Irrigation and Farming Systems with Solar MajiPump in Ethiopia

Author:

Assefa Tewodros T.ORCID,Adametie Temesgen F.ORCID,Yimam Abdu Y.,Belay Sisay A.ORCID,Degu Yonas M.ORCID,Hailemeskel Solomon T.ORCID,Tilahun Seifu A.ORCID,Reyes Manuel R.,Prasad P. V. VaraORCID

Abstract

Small-scale irrigation in Ethiopia is a key strategy to improve and sustain the food production system. Besides the use of surface water for irrigation, it is essential to unlock the groundwater potential. It is equally important to use soil management and water-saving systems to overcome the declining soil fertility and the temporal water scarcity in the region. In this study, the solar MajiPump was introduced to enable dry season crop production in Ethiopia using shallow groundwater sources. The capacity of the MajiPumps (MP400 and MP200) was tested for the discharge head and discharge using three types of solar panels (150 W and 200 W rigid, and 200 W flexible). Besides, drip irrigation and conservation agriculture (CA) farming systems were evaluated in terms of water productivity and crop yield in comparison to the farmers’ practice (overhead irrigation and tilled farming system). Results indicated that the maximum discharge head capacity of the MajiPumps was 18 m, 14 m, 10 m when using MP400 with 200 W rigid, MP400 with 200 W flexible, and MP200 with 150 W rigid solar panels, respectively. The corresponding MajiPump flow rates ranged from 7.8 L/min to 24.6 L/min, 3 L/min to 25 L/min, and 3.6 L/min to 22.2 L/min, respectively. Compared to farmer’s practice, water productivity was significantly improved under the CA farming and the drip irrigation systems for both irrigated vegetables (garlic, onion, cabbage, potato) and rainfed maize production. The water productivity of garlic, cabbage, potato, and maize was increased by 256%, 43%, 53%, and 9%, respectively, under CA as compared to conventional tillage (CT) even under overhead irrigation. Thus, farmers can obtain a significant water-saving benefit from CA regardless of water application systems. However, water and crop productivity could be further improved in the combined use of MajiPump with CA and drip irrigation (i.e., 38% and 33% water productivity and 43% and 36% crop productivity improvements were observed for potato and onion, respectively). Similarly, compared to CT, the use of CA significantly increased garlic, cabbage, potato, and maize yield by 170%, 42%, 43%, and 15%, respectively under the MajiPump water-lifting system. Overall, the solar-powered drip irrigation and CA farming system were found to be efficient to expand small-scale irrigation and improve productivity and livelihoods of smallholder farmers in Ethiopia.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3