Response of Annual Weeds to Glyphosate: Evaluation and Optimization of Application Rate Based on Fecundity-Avoidance Biomass Threshold Criterion

Author:

Leguizamon Eduardo S,Ferrari German,Williams Martin M,Burgos Nilda R,Travlos IliasORCID,Korres Nicholas E

Abstract

The increased availability and high adoption rate of glyphosate-tolerant crops have selected for several glyphosate-resistant weed species. The response of representative weed species to glyphosate was assessed to provide insights and tools for optimizing glyphosate use for economic, agronomic and environmental reasons. Anoda cristata, Chenopodium album, Digitaria sanguinalis, Eleusine indica and Portulaca oleracea were grown outdoors in pots containing commercial potting medium. An increasing dose of glyphosate was applied to these species at three growth stages. Weed response was evaluated visually compared to the nontreated control and shoot dry weights were recorded. Fecundity was also determined. Based on visual evaluations, the dose of glyphosate required to attain 90% control of the species tested exhibited an application rate margin up to 28.5-fold compared to recommended rate, denoting a potential for rate optimization. Except for A. cristata, the recommended dose of glyphosate could be reduced by 30%–60% and still achieve 90% or greater control. The order of species sensitivity, based on effective dose 50 (ED50 )values, was E. indica > C. album > D. sanguinalis > P. oleracea > A. cristata. The ratio of ED90/ED50 was constant, indicating that increasing the glyphosate dose 8.7-fold would reduce weed biomass 1.8-fold. In most cases, the fecundity-avoidance biomass threshold (i.e., the maximum allowable weed biomass for herbicide application in order to prevent weed seed production and dispersal) for glyphosate was below the ED90 value. Complimentary measures such as fecundity-avoidance biomass threshold will improve herbicide evaluation procedures and preserve the effectiveness of herbicides, including glyphosate, on sensitive species, an important issue particularly when action to reduce herbicide resistance development is highly required.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3