Intelligent Weed Management Based on Object Detection Neural Networks in Tomato Crops

Author:

López-Correa Juan ManuelORCID,Moreno HugoORCID,Ribeiro AngelaORCID,Andújar Dionisio

Abstract

As the tomato (Solanum lycopersicum L.) is one of the most important crops worldwide, and the conventional approach for weed control compromises its potential productivity. Thus, the automatic detection of the most aggressive weed species is necessary to carry out selective control of them. Precision agriculture associated with computer vision is a powerful tool to deal with this issue. In recent years, advances in digital cameras and neural networks have led to novel approaches and technologies in PA. Convolutional neural networks (CNNs) have significantly improved the precision and accuracy of the process of weed detection. In order to apply on-the-spot herbicide spraying, robotic weeding, or precise mechanical weed control, it is necessary to identify crop plants and weeds. This work evaluates a novel method to automatically detect and classify, in one step, the most problematic weed species of tomato crops. The procedure is based on object detection neural networks called RetinaNet. Moreover, two current mainstream object detection models, namelyYOLOv7 and Faster-RCNN, as a one and two-step NN, respectively, were also assessed in comparison to RetinaNet. CNNs model were trained on RGB images monocotyledonous (Cyperus rotundus L., Echinochloa crus galli L., Setaria verticillata L.) and dicotyledonous (Portulaca oleracea L., Solanum nigrum L.) weeds. The prediction model was validated with images not used during the training under the mean average precision (mAP) metric. RetinaNet performed best with an AP ranging from 0.900 to 0.977, depending on the weed species. Faster-RCNN and YOLOv7 also achieved satisfactory results, in terms of mAP, particularly through data augmentation. In contrast to Faster CNN, YOLOv7 was less precise when discriminating monocot weed species. The results provide a better insight on how weed identification methods based on CNN can be made more broadly applicable for real-time applications.

Funder

AEI

European Institute of Innovation and Technology

DACWEED: Detection and ACtuation system for WEED management

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3