The Nitrogen Cycling Key Functional Genes and Related Microbial Bacterial Community α−Diversity Is Determined by Crop Rotation Plans in the Loess Plateau

Author:

Liu Rui1,Liu Yang2,Gao Yuan2,Zhao Fazhu2,Wang Jun12

Affiliation:

1. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China

2. Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi’an 710127, China

Abstract

Soil nitrogen cycling microbial communities and functional gene α−diversity indicate soil nitrogen cycling ecological functions and potentials. Crop rotation plans affect soil nitrogen fractions and these indicators. We sequenced soil samples from four crop rotation plans (fallow, winter wheat monoculture, pea-winter wheat-winter wheat-millet rotation, and corn-wheat-wheat-millet rotation) in a long-term field experiment. We examined how microbial communities and functional gene α−diversity changed with soil nitrogen fractions and how nitrogen fractions regulated them. Planting crops increased the abundance and richness of nitrogen cycling key functional genes and bacterial communities compared with fallow. The abundance and richness correlated positively with nitrogen fractions, while Shannon index did not. The abundance increased with soil total nitrogen (STN) and potential nitrogen mineralization (PNM), while Shannon index showed that nitrogen cycling key functional genes increased and then decreased with increasing STN and PON. Introducing legumes into the rotation improved the α−diversity of nitrogen cycling key functional genes. These results can guide sustainable agriculture in the Loess Plateau and clarify the relationship between nitrogen fractions and nitrogen cycling key functional genes.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3