Interplanting of Corn (Zea mays L.) Shifts Nitrogen Utilization by Promoting Rhizosphere Microbial Nitrogen Nitrification

Author:

Miao Zhengyan1,Shang Haipeng1,Lin Mengjie1,Song Rui123,He Jiashuai1,Li Xinmei1,Sun Leikang1,Li Xiaoyong1,Guo Hangzhao1,Li Yuxia12,Li Rongfa12,Liu Quanjun1,Feng Zhibo1,Jia Xucun123,Wang Qun123

Affiliation:

1. College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China

2. Henan Province Agro-Ecosystem Field Observation and Research Station, Zhumadian 463900, China

3. National Key Laboratory of Wheat and Maize Crops Science, Zhengzhou 450046, China

Abstract

Interplanting is an efficient method of improving nutrient utilization. However, the impact of intraspecific interplanting on rhizosphere microbial nitrogen cycling needs to be studied further. In this study, two corn cultivars were selected as the materials: Zhengdan958 (ZD958, high nitrogen use efficiency) and Denghai3622 (DH3622, low nitrogen use efficiency). Three planting patterns (interplanting, ZD958 monocropping, and DH3622 monocropping) were set up to study the effects of interplanting on crop growth and rhizosphere microbial nitrogen cycle function under two nitrogen levels: low nitrogen (140 kg N ha−1) and normal nitrogen (280 kg N ha−1). The results showed that the grain yield and nitrogen content in interplanting were significantly increased due to an enhanced leaf area index and root dry weight. The nitrogen accumulation and nitrogen use efficiency were enhanced by 8.14% and 19.38% in interplanting, which resulted in reductions in NH4+ and NO3− content in the rhizosphere. Interplanting enhanced rhizosphere nitrogen cycling processes; nitrification, denitrification, and nitrate reduction were increased. This study demonstrated that interplanting promotes corn nitrogen acquisition from the soil and indirectly regulates rhizosphere microbial function. These findings imply that the intraspecific interplanting of crops with appropriate functional traits is a promising approach to establishing diversified, productive, and efficient resource utilization ecosystems.

Funder

National Key Research and Development Program of China

Henan Province Agro-ecosystem Field Observation and Research Station

Henan Natural Science Foundation

the China Postdoctoral Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3