Using a Hybrid Convolutional Neural Network with a Transformer Model for Tomato Leaf Disease Detection

Author:

Chen Zhichao1,Wang Guoqiang1,Lv Tao1,Zhang Xu1

Affiliation:

1. Electronic Engineering College, Heilongjiang University, Harbin 150080, China

Abstract

Diseases of tomato leaves can seriously damage crop yield and financial rewards. The timely and accurate detection of tomato diseases is a major challenge in agriculture. Hence, the early and accurate diagnosis of tomato diseases is crucial. The emergence of deep learning has dramatically helped in plant disease detection. However, the accuracy of deep learning models largely depends on the quantity and quality of training data. To solve the inter-class imbalance problem and improve the generalization ability of the classification model, this paper proposes a cycle-consistent generative-adversarial-network-based Transformer model to generate diseased tomato leaf images for data augmentation. In addition, this paper uses a Transformer model and densely connected CNN architecture to extract multilevel local features. The Transformer module is utilized to capture global dependencies and contextual information accurately to expand the sensory field of the model. Experiments show that the proposed model achieved 99.45% accuracy on the PlantVillage dataset. The 2018 Artificial Intelligence Challenger dataset and the private dataset attained accuracies of 98.30% and 95.4%, and the proposed classification model achieved a higher accuracy and smaller model size compared to previous deep learning models. The classification model is generalizable and robust and can provide a stable theoretical framework for crop disease prevention and control.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference35 articles.

1. Panno, S., Davino, S., Caruso, A.G., Bertacca, S., Crnogorac, A., Mandić, A., Noris, E., and Matić, S. (2021). A review of the most common and economically important diseases that undermine the cultivation of tomato crop in the mediterranean basin. Agronomy, 11.

2. Saleem, M.H., Potgieter, J., and Arif, K.M. (2019). Plant disease detection and classification by deep learning. Plants, 8.

3. The calculation of posterior distributions by data augmentation;Tanner;J. Am. Stat. Assoc.,1987

4. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets. Adv. Neural Inf. Process. Syst., 27.

5. Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3