Abstract
Immobilisation of fertiliser nitrogen (N) by soil microorganisms can reduce N availability to crops, decreasing growth and yield. To date, few studies have focussed on the effect of different plant species on immobilisation of fertiliser N. Canola (Brassica napus) is known to influence the soil microbiome and increase mineral N in soil for future crops compared with cereals. We tested the hypothesis that canola can reduce immobilisation of fertiliser N by influencing the composition of the rhizosphere microbiome. To investigate this, we conducted a glasshouse soil column experiment comparing N fertiliser uptake between canola and wheat (Triticum aestivium) and partitioning of fertiliser N between plants and microorganisms. Plants were grown in soil to which high C:N ratio wheat residues and 15N-labelled urea fertiliser were applied. There was no difference between wheat and canola in fertiliser N uptake despite differences in fungal community composition and the carbon metabolising enzyme alpha-glucosidase in the rhizosphere. Canola obtained more soil-derived N than wheat. There was no significant difference in the rhizosphere bacterial communities present between wheat and canola and unplanted controls. Our results highlight the capacity of canola to increase mineralisation of soil N compared with wheat although the study could not describe the microbial community which facilitated this increase.
Subject
Agronomy and Crop Science