Comprehensive Evaluation and Physiological Response of Quinoa Genotypes to Low Nitrogen

Author:

Deng Yan1,Sun Xiaojing1,Zhang Qi1,Anwar Sumera2,Lu Jingying1,Guo Hongxia1,Qin Lixia1,Zhang Liguang1,Wang Chuangyun1

Affiliation:

1. State Key Laboratory of Sustainable Dryland Agriculture, Agricultural College, Shanxi Agricultural University, Taiyuan 030031, China

2. Department of Botany, Government College Women University Faisalabad, Faisalabad 38000, Pakistan

Abstract

The utilization of low-N tolerant and N-efficifent varieties offers significant benefits in terms of reducing the need for excessive N fertilizer input. Quinoa, a resilient crop for agroecological transition, possesses a wide genetic diversity, making it suitable for selecting genotypes that require less N fertilizer. In this study, the growth and physiological characteristics of nine quinoa genotypes were assessed to determine their low-N tolerance using the fuzzy membership function. Based on comprehensive evaluation indices, three genotypes were identified: low-N tolerant (BL22), intermediately tolerant (A29), and sensitive (G68). These genotypes were exposed to varying N concentrations, including normal (4 mM), low (0.8 mM), and deficient N (no N) conditions. The results indicate that low-N conditions altered root phenotype, with reduced biomass, total protein, and chlorophyll content; increased soluble sugar levels; and inhibited N-metabolizing enzymes (nitrate reductase, glutamine synthetase, glutamate synthase) and N uptake. Under low-N conditions, the tolerant genotype exhibited higher maximal efficiency of photosystem II (Fv/Fm), root vitality, and N content compared to the sensitive genotype. Interestingly, the sensitive genotype displayed elongated and thinner shoots and roots in response to low-N, suggesting that plant height and root length are unreliable indicators of low-N tolerance in quinoa. In contrast, shoot and root dry biomass, Fv/Fm, chlorophyll content, N-metabolizing enzymes, and N content proved to be reliable indicators of low-N tolerance during the early growth stage of quinoa. Overall, these findings highlight the potential of utilizing specific growth and physiological parameters as indicators for screening low-N tolerant quinoa genotypes, thereby reducing dependence on N fertilizers.

Funder

State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University

Science and Technology Innovation Program of Shanxi Universities

The central government guides the local science and technology development fund

National Major Talent Engineering Expert Workstation Project

Academician workstation

Key Projects of Key R&D plan Shanxi Province

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3