Soil Physical Properties Spatial Variability under Long-Term No-Tillage Corn

Author:

Awal RipendraORCID,Safeeq MohammadORCID,Abbas FarhatORCID,Fares Samira,Deb Sanjit K.,Ahmad Amjad,Fares AliORCID

Abstract

Spatial variability of soil physical and hydrological properties within or among agricultural fields could be intrinsically induced due to geologic and pedologic soil forming factors, but some of the variability may be induced by anthropogenic activities such as tillage practices. No-tillage has been gaining ground as a successful conservation practice, and quantifying spatial variability of soil physical properties induced by no-tillage practices is a prerequisite for making appropriate site-specific agricultural management decisions and/or reformulating some management practices. In particular, there remains very limited information on the spatial variability of soil physical properties under long-term no-tillage corn and tropical soil conditions. Therefore, the main objective of this study was to quantify the spatial variability of some selected soil physical properties (soil surface temperature (ST), volumetric water content (θv), soil resistance (TIP), total porosity (θt), bulk density (ρb), organic carbon, and saturated hydraulic conductivity (Ksat)) using classical and geostatistical methods. The study site was a 2 ha field cropped no-tillage sweet corn for nearly 10 years on Oahu, Hawaii. The field was divided into 10 × 10 and 20 × 20 m grids. Soil samples were collected at each grid for measuring ρb, θt, and soil organic carbon (SOC) in the laboratory following standard methods. Saturated hydraulic conductivity, TIP at 10 and 20 cm depths, soil surface temperature, and θv were also measured. Porosity and ρb have low and low to moderate variability, respectively based on the relative ranking of the magnitude of variability drawn from the coefficient of variation. Variability of the SOC, TIP, and Ksat ranges from moderate to high. Based on the best-fitted semivariogram model for finer grid data, 9.8 m and 142.2 m are the cut off beyond which the measured parameter does not show any spatial correlation for SOC, and TIP at 10 cm depth, respectively. Bulk density shows the highest spatial dependence (range = 226.8 m) among all measured properties. Spatial distribution of the soil properties based on kriging shows a high level of variability even though the sampled field is relatively small.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference52 articles.

1. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties

2. Quantifying agricultural management effects on soil properties and processes

3. Sustainable Practices for Vegetable Production in the South;Peet,1996

4. Conservation tillage: An analysis of acreage projections in the United States;Schertz;J. Soil Water Conserv.,1988

5. National Tillage Trends 1990–2004http://www.ctic.purdue.edu/media/pdf/Core4/1990-2004data.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3