Comparative Study on the Physio-Biochemical Responses of Spring and Winter Barley Genotypes under Vernalized and Greenhouse Conditions

Author:

Rasheed Adeela,Feng Qidong,Adil Muhammad FaheemORCID,Ahsan MuhammadORCID,Han Zhigang,Zeng FanrongORCID,Shamsi Imran HaiderORCID

Abstract

In barley (Hordeum vulgare L.) breeding, heading date is one of the most important agricultural traits that is essential for the completion of its life cycle. Certain endogenous and environmental factors regulate floral transition, morphing the complex genetic mechanism of the heading phase, which could serve as a premise of orchestration for improved yields. To elaborate the network of genetic and environmental signals, a hydroponic experiment was carried out using two spring (i.e., DM65 and DM70) and two winter barley genotypes (i.e., DM269 and DM385). Our results confirmed that the vernalized environment produced a substantial reduction in plant height, biomass and photosynthetic activity compared with the control plants. A noticeable increase in oxidative stress was exhibited by DM65 and DM70 plants compared with their respective controls at 20 °C, while no significant difference was observed for any genotype grown in the greenhouse (25 °C). Simultaneously, increased antioxidant enzyme activity in winter barley genotypes showed a defensive mechanism under vernalized conditions (4 °C). Furthermore, the expression of key regulatory flowering genes revealed that the vernalization gene (HvVRN1) is the key regulator of floral induction after cold exposure, whereas Photoperiod Response Locus 1 (HvPpd-H1) had significantly higher expression under greenhouse conditions, along with Phytochrome C (HvPHY-C), validating their involvement as upstream heading time regulators. These findings contribute to enriching the study of environmental signals that substantially modulate the complex mechanism of barley heading date.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3