Impact of Integrated Rice-Crayfish Farming on Soil Aggregates and Organic Matter Distribution

Author:

Lv Tianqi12,Wang Caiyun12,Xu Yueling12,Zhou Xueyan12,Huang Fan12,Yu Lei12ORCID

Affiliation:

1. Key Laboratory for Geographical Process Analysis and Simulation of Hubei Province, Central China Normal University, Wuhan 430079, China

2. College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China

Abstract

This study evaluates the effects of a combined rice-crayfish farming model and compares this model with traditional paddy fields. The focus is on soil aggregate characteristics, organic matter content, and also the distribution of soil aggregates. This research was conducted in Qianjiang, Hubei Province. The surface soil samples were collected from two types of arable land: paddy fields (WR) and rice-crayfish fields (CR). We performed an analysis of soil aggregate distribution and organic matter content. Results reveal that the majority of soil aggregates exceed 2 mm in size (≥74.94%). The integrated rice-crayfish farming model significantly enhances the presence of large soil aggregates. And these parameters such as the average weight diameter (MWD), average geometric diameter (GWD), and agglomerate stability (PAD) also increase. Moreover, it mitigates agglomerate fragmentation (WASR). However, the net increase in total soil organic matter due to the integrated farming model remains modest. Organic matter content within the agglomerates follows an initial increase followed by a decrease. The highest content occurs in the 0.25–0.5 mm grain size (D4). When examining the distribution of soil aggregates and organic matter, it becomes evident that organic matter primarily originates from grain sizes larger than 2 mm (≥71.92%). Notably, the rice-crayfish paddy field (CR) exhibits a substantially higher contribution compared to the traditional rice paddy field (WR). This study demonstrates several positive outcomes of the integrated rice-crayfish farming model compared to traditional paddy farming. It promotes the development of larger soil aggregates, enhances the structural integrity of soil aggregates, and improves their mechanical and hydrological stability. Additionally, it marginally increases the organic matter content within each component of soil aggregates. Furthermore, integrated modelling increases the impact of larger soil aggregates on soil organic matter. This improves the quality of the soil and as a result, crop yields are increased. The health of the soil is also improved and this contributes positively to food security.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3