Abstract
As the world economy and society have developed quickly, the amount of farmland soil pollution has become alarming, which has seriously threatened global food security. It is necessary to take effective measures on the moderately contaminated soil to produce high-quality food and to protect food security worldwide by effective use of land resources. Our experimental design was to study the changes in soil physicochemical properties and tomato yield and quality indicators by irrigating tomatoes on cadmium-contaminated soil with two different water qualities (reclaimed water irrigation: RW; tap water irrigation: TW) through drip irrigation devices. Tomato quality indicators were determined using plant physiological assays, as well as vitamin C (VC), total acidity (TA), protein content (PC), and soluble sugar content (SS). We tested five different types of cadmium-contaminated soils (less than 0.60 mg/kg, 0.60–1.20 mg/kg, 1.20–1.80 mg/kg, 1.80–2.40 mg/kg, 2.40–3.00 mg/kg) against RW and TW, and performed high-throughput sequencing of the soils to obtain environmental results for soil microbial diversity. The results reveal that compared with the TW condition, soil nutritional status was increased with the irrigated RW. The yield of the tomatoes increased by 52.03–94.03% than TW. The results of the study showed significant and highly significant relationships between tomato quality indicators (TA, SS, yield) and soil physical and chemical properties indicators (p < 0.01, 0.05). For instance, the RW increased the SOM by 6.54–12.13%, the TP by 0.48–24.73%, the yield of the tomatoes by 52.03–94.03% than TW, while the cadmium content did not show significant differences (p < 0.05), and the cadmium content did not increase the soil’s pollution level. Compared with TW treatment, RW treatment alleviated the inhibition of soil microbial diversity by cadmium and RW also increased its soil microbial diversity. The relative abundance of Proteobacteria, Gemmatimonadetes, and Bacteroidetes in the RW condition were higher than in the TW condition at different cadmium concentrations. In conclusion, RW improved the overall quality conditions of soil and the diversity of microbial communities, and did not aggravate the pollution degree of cadmium-contaminated soil, and affected the yield of tomatoes positively. RW can be an effective irrigation technique to reduce the use of clean water.
Funder
Collaborative Innovation Project of Science and Technology Innovation Engineering of the Chinese Academy of Agricultural Sciences
National Natural Science Foundation of China
Subject
Agronomy and Crop Science
Reference58 articles.
1. Response of tomato (Lycopersicon esculentum Mill.) growth to different phosphorous levels and sowing dates;Nasreen;Acta Ecol. Sin.,2019
2. Lu, Q. Tomato Quality Traits Diversity Analysis and Agronomic Characters Identification, 2021.
3. You, Q. Genetic Diversity Analysis and Comprehensive Evaluation of Phenotypic Traits in Dwarf Tomato Germplasm Resources, 2021.
4. Effect of biochar on yield and quality of tomato grown on a metal-contaminated soil;Almaroaia;Sci. Hortic.,2020
5. Different Sensitivity of 23 Common Crop Species to Cadmium Toxicity;Ding;Environ. Sci.,2011
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献