Genome-Wide Characterization of HSP90 Gene Family in Chinese Pumpkin (Cucurbita moschata Duch.) and Their Expression Patterns in Response to Heat and Cold Stresses

Author:

Hu Yanping12,Zhang Tingting23,Wang Peng2,Li Yuxin2,Wang Min1,Zhu Baibi1,Liao Daolong1,Yun Tianhai1,Huang Wenfeng1,Chen Yisong1,Zhang Wen1,Zhou Yang2ORCID

Affiliation:

1. Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou 571199, China

2. Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China

3. Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, China

Abstract

Heat shock protein 90 (HSP90) plays critical roles in plant growth and development, as well as in response to abiotic stresses such as heat and cold. To comprehensively analyze the HSP90 gene family and determine the key HSP90 gene responsive to temperature stress in pumpkin (Cucurbita moschata Duch.), bioinformatics and molecular biology techniques were used in this study. A total of 10 CmoHSP90 genes were identified from the pumpkin genome, encoding amino acids of 567–865, with protein molecular weight of 64.32–97.36 kDa. Based on the phylogenetic analysis, they were classified into four groups. The members in each group contained similar conserved motifs and gene structures. The 10 CmoHSP90 genes were distributed on the 9 chromosomes of C. moschata. Four pairs of segmental duplication genes (CmoHSP90-1/CmoHSP90-10, CmoHSP90-2/CmoHSP90-7, CmoHSP90-3/CmoHSP90-6, and CmoHSP90-4/CmoHSP90-9) were detected. Synteny analysis revealed that 10 C. maxima HSP90 genes and 10 C. moschata HSP90 genes were orthologous genes with 17 syntenic relationships. Promoter analysis detected 23 cis-acting elements including development-, light-, stress-, and hormone-related elements in the promoter regions of pumpkin HSP90 genes. Further analysis showed that the transcript levels of CmoHSP90-3 and CmoHSP90-6 were remarkably up-regulated by heat stress, while CmoHSP90-6 and CmoHSP90-10 were significantly up-regulated by cold stress, suggesting that these HSP90 genes play critical roles in response to temperature stress in pumpkins. The findings will be valuable for understanding the roles of CmoHSP90s in temperature stress response and should provide a foundation for elucidating the function of CmoHSP90s in C. moschata.

Funder

the Major Science and Technology Plan of Hainan Province

Hainan Province Science and Technology Special Fund

the Opening Project Fund of Key Laboratory of Vegetable Biology of Hainan Province

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3