Pyramiding Rice Blast Resistance Gene Pi2 and Fragrance Gene badh2

Author:

Wang Yakun1ORCID,Tang Shengjia1,Guo Naihui2,An Ruihu1,Ren Zongliang1,Hu Shikai1,Wei Xiangjin1ORCID,Jiao Guiai1,Xie Lihong1,Wang Ling1ORCID,Chen Ying1,Zhao Fengli1ORCID,Tang Shaoqing1,Hu Peisong13ORCID,Sheng Zhonghua1

Affiliation:

1. State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China

2. Rice Research Institute, Shengyang Agricultural University, Shenyang 110065, China

3. Zhejiang Lab, Hangzhou 310006, China

Abstract

Rice is a major food crop across the globe, but the frequent occurrence of rice blast in recent years has seriously affected the yield of rice. In addition, fragrance rice is becoming increasingly popular among consumers. In this study, the fragrant rice variety Wenxiang-1 was used as the donor of the fragrance gene badh2, and the rice variety R1179 was used as the donor of rice blast resistance gene Pi2. Plants that were homozygous for both Pi2 and badh2 were selected using marker-assisted selection (MAS) applied to the Wenxiang-1/R1179 F2 segregation population with the functional markers Pi2-1 and Badh2-1 as well as whole-genome-SNP-genotyping technology. Finally, “elite” rice varieties R365 and R403 that had both high levels of rice blast resistance (level 3 and 4) and fragrance (0.650 and 0.511 mg/kg) were bred. Genetic composition analysis indicated that 40.67% of the whole genome of R365 was inherited from Wenxiang-1, while 59.33% was inherited from R1179. Similarly, 46.26% of the whole genome of R403 was inherited from Wenxiang-1, while 53.74% was inherited from R1179. These new hybrid lines with R365 and R403 as the male parents also exhibit high yield per hectare, especially C815S/R365 and Yu03S/R403 F1, with yields per hectare of 9.93 ± 0.15 and 9.6 ± 0.17 tons. These plants also possess high levels of rice blast resistance (level 3 and 4) and fragrance (0.563 and 0.618 mg/kg).

Funder

China National Key Research and Development Program

National S&T Major Project

China Natural Science Foundation

Zhejiang Science and Technology Projects

intelligent technology and platform development for rice breeding

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3