Increase in Soil Carbon Pool Stability Rather Than Its Stock in Coastal Saline—Alkali Ditches following Reclamation Time

Author:

Li Xiangrong12,Liu Zhen13ORCID,Li Jing13,Gong Huarui13ORCID,Zhang Yitao13,Sun Zhigang13,Ouyang Zhu13

Affiliation:

1. CAS Engineering Laboratory for Yellow River Delta Modern Agriculture, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China

3. Shandong Dongying Institute of Geographic Sciences, Dongying 257000, China

Abstract

Extensive drainage ditches are constructed to reduce soil salinity in reclaimed saline–alkali farmland, consequently forming plant growth hotspots and impacting soil carbon stocks therein. However, the investigation into changes in soil carbon stocks remains limited in these ditches. To address this, soil samples were collected from drainage ditches, which originated from the reclamation of saline–alkali farmland, at different reclamation years (the first, seventh, and fifteenth year). Moreover, fractions were separated from soil samples; a particle size separation method (particulate organic matter, POM; mineral–associated organic matter, MAOM) and a spatio–temporal substitution method were conducted to analyze the variations in soil carbon components and the underlying mechanisms. The results indicate that there were no significant variations in the contents and stocks of soil organic carbon (SOC) and soil inorganic carbon (SIC) following the increase in reclamation time. However, in the POM fraction, the SOC content (SOCPOM) and stock significantly decreased from 2.24 to 1.12 g kg−1 and from 19.02 to 12.71 Mg ha−1, respectively. Conversely, in the MAOM fraction, the SOC content (SOCMAOM) and stock significantly increased from 0.65 to 1.70 g kg−1 and from 5.30 to 12.27 Mg ha−1, respectively. The different changes in SOCPOM and SOCMAOM, as well as the result of the structural equation model, showed a possible transformation process from SOCPOM to SOCMAOM in the soil carbon pool under the driving force of reclamation time. The results in terms of the changes in soil carbon components demonstrate the stability rather than the stock of the soil carbon pool increase in coastal saline–alkali ditches following the excavation formation time. Although more long time series and direct evidence are needed, our findings further provide a case study for new knowledge about changes in the soil carbon pool within saline–alkali ditches and reveal the potential processes involved in the transformation of soil carbon components.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

Shandong Provincial Natural Science Foundation

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province, China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3