Salt Stress Induces Differentiated Nitrogen Uptake and Antioxidant Responses in Two Contrasting Barley Landraces from MENA Region

Author:

Ben Azaiez Fatma EzzahraORCID,Ayadi SawsenORCID,Capasso Giorgia,Landi SimoneORCID,Paradisone Valeria,Jallouli SalmaORCID,Hammami Zied,Chamekh ZoubeirORCID,Zouari InèsORCID,Trifa Youssef,Esposito SergioORCID

Abstract

The interaction between salinity and nitrogen metabolism has been investigated in two barley landraces, one tolerant (“100/1B”) and one susceptible to salinity (“Barley medenine”) from the Middle East and North Africa (MENA) region. Barley plants were exposed to 50 mM NaCl for 7 days; then, salinity was increased to 150 mM NaCl in the presence (10 mM) or limitation (1 mM) of ammonium as a nitrogen source. Upon salinity, “100/1B” was shown to support N assimilation by enhancing the glutamine synthetase (GS) and glutamine oxoglutarate aminotransferase (GOGAT) cycle under high N, and the stimulation of the glutamate dehydrogenase (GDH) pathway under low N treatment. In “Barley medenine”, salinity reduced the GS/GOGAT cycle, and increased GDH activity. Upon salinity, Heat Shock Proteins 70 and PEPC remained unchanged in “100/1B”, while they decreased in “Barley medenine”. The tolerance degree is a determining factor in enzymes’ occurrence and regulation: exposed to salinity, “100/1B” rapidly increased APX and PEPC activities, while this was delayed in “Barley medenine”. Salinity increased cyt-G6PDH levels in “100/1B”, while “Barley medenine” showed a decrease in G6PDH isoforms. Correlation analyses confirm GOGAT was related to G6PDH; GDH and APX with PEPC in “100/1B” under moderate salinity; severe salinity correlated GDH with G6PDH and PEPC. In “Barley medenine” under salinity, GOGAT was correlated with G6PDH, while APX showed a relation with PEPC. Therefore, specific enzymatic activities and occurrence can be used to determine stress responsiveness of different landraces. We suggest that the rapid increase in G6PDH, APX, and nitrogen assimilation enzymes activities represents an index of tolerance in “100/1B” and a stress symptom in “Barley medenine”.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3