Combination of Polymer-Coated Urea and Rapid-Release Urea Increases Grain Yield and Nitrogen Use Efficiency of Rice by Improving Root and Shoot Activities

Author:

Xu Rongyue12,Fu Jiangyao12,Zhang Yajun12,Sun Zhiwei12,Xu Yuemei12,Zhang Weiyang12ORCID,Zhu Kuanyu12,Gu Junfei12ORCID,Wang Zhiqin12,Yang Jianchang12ORCID

Affiliation:

1. Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China

2. Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China

Abstract

The use of polymer-coated urea (PCU) can improve nitrogen use efficiency (NUE), compared to the application of rapid-release urea (RU). However, the effect of PCU-based nitrogen management on grain yield and the NUE of rice and its underlying mechanism remain unclear. A japonica rice cultivar Jinxiangyu 1 was grown in the field with four treatments including N omission (0N), split application of RU (Control), one-time application of 100% PCU (T1), and one-time application of 70% PCU + 30% RU (T2). Results showed that, compared to the control, the grain yield was significantly increased in the T2 treatment, while it was comparable in the T1 treatment. This was mainly due to increased total spikelets in the T2 treatment. Root oxidation activity (ROA) and root zeatin (Z) + zeatin riboside (ZR) content during booting were the distinct advantages of the T2 treatment, compared to either the control or T1 treatment, exhibiting significant or highly significant correlations with leaf photosynthesis. This process contributed significantly to total spikelets and total N uptake. Additionally, the T2 treatment absorbed more N than the control without reducing the internal N use efficiency (IEN), primarily due to its unchanged harvest index (HI) driven by comparable non-structural carbohydrate remobilization. In conclusion, combining PCU with RU can enhance the coordination of root and shoot traits during booting while maintaining a competitive HI at maturity, thereby significantly improving grain yield and achieving a balance in N uptake and utilization.

Funder

National Natural Science Foundation of China

Yangzhou University Student Science and Technology Innovation Program

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3