Karst Soil Patch Heterogeneity with Gravels Promotes Plant Root Development and Nutrient Utilization Associated with Arbuscular Mycorrhizal Fungi

Author:

Li Qing,Umer Muhammad,Guo Yun,Shen Kaiping,Xia Tingting,Xu Xinyang,Han Xu,Ren Wenda,Sun Yan,Wu Bangli,Liu Xiao,He YuejunORCID

Abstract

Arbuscular mycorrhizal (AM) fungi associated with plant roots play an essential role in the belowground ecological process in karst habitats with high spatial and substrate heterogeneity. However, the effects of AM fungi on root morphology and nutrient uptake under different soil patch sizes and gravel content in karst habitats are still unclear. A controlled experiment was conducted using a square device divided into 16 grid patches. This experiment had three treatments, including the mycorrhizal fungal treatment inoculated with (M+) or without Glomus etunicatum Becker & Gerd (M−), the patch heterogeneity treatment through the homogeneous patch (Homo), heterogeneity-large patch (Hetl) and heterogeneity-small patch (Hets), and substrate heterogeneity treatment through the gravel-free substrate (GF), gravel-low substrate (GL), and gravel-high substrate (GH). Root traits and nutrients of Bidens pilosa L were analyzed, and the result showed the AM fungi significantly increased the dry weight, length, surface area, average diameter, volume, tips, branching points, and N, P, and K acquisitions of B. pilosa roots, but significantly decreased the specific root length. The Hets with soil and gravel increased the dry weight, length, surface area, tips, branching points, and N, P, and K acquisitions of B. pilosa roots compared with Hetl regulated by AM fungi. The GL and GH treatments also increased the dry weight, length, surface area, tips, branching points, and N, P, and K acquisitions of B. pilosa roots compared with GF regulated by AM fungi. These results indicate that the B. pilosa roots’ nutritional acquisition benefits were higher in Hets mixed with gravel for its root morphological development regulated by AM fungi in karst soil. In conclusion, we suggest that soil patch heterogeneity with gravels promotes root morphological development and nutrient utilization to karst plants associated with arbuscular mycorrhizal fungi.

Funder

the Guizhou Hundred-level Innovative Talents Project (Qian-ke-he platform talents

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3