Utilizing Hydrophobic Sand to Construct an Air-Permeable Aquiclude to Enhance Rice Yield and Lodging Resistance

Author:

Ma Xiaoyan1ORCID,Wu Jing2ORCID,Su Yuming2,Qin Shengyi2,Pilla Francesco1ORCID

Affiliation:

1. School of Architecture, Planning and Environmental Policy, University College Dublin, D14 E099 Dublin, Ireland

2. State Key Laboratory of Silica Sand Resources Utilization, Beijing 100085, China

Abstract

Global climate change and persistent droughts lead to soil desertification, posing significant challenges to food security. Desertified lands, characterized by high permeability, struggle to retain water, thereby hindering ecological restoration. Sand, a natural resource abundant in deserts, inspired our proposal to design hydrophobic sand and construct Air-permeable Aquicludes (APAC) using this material. This approach aims to address issues related to the ecological restoration of desertified lands, food security, and the utilization of sand resources. Reclamation of desertified land and sandy areas can simultaneously address ecological restoration and ensure food security, with soil reconstruction being a critical step. This study investigated the effects of constructing an Air-permeable Aquiclude (APAC) using hydrophobic sand on rice yield and lodging resistance, using clay aquitard (CAT) and plastic aquiclude (PAC) as control groups. The APAC enhanced soil oxygen content, increased internode strength, and improved vascular bundle density, substantially reducing the lodging index and increasing yield. This research finds that the APAC (a) increased internode outer diameter, wall thickness, fresh weight, and filling degree; (b) enhanced the vascular bundle area by 11.11% to 27.66% and increased density; (c) reduced the lodging index by 37.54% to 36.93% (p < 0.01); and (d) increased yield to 8.09 t·hm−2, a rise of 12.05% to 14.59% (p < 0.05), showing a negative correlation with lodging index. These findings suggest that APAC has very good potential for desertified land reclamation and food security. In conclusion, the incorporation of hydrophobic sand in APAC construction considerably strengthens rice stem lodging resistance and increases yield, demonstrating considerable application potential for the reclamation of desertified and sandy land and ensuring food security.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3