Methods for the Identification of Microclimates for Olive Fruit Fly

Author:

Kalamatianos Romanos,Karydis IoannisORCID,Avlonitis MarkosORCID

Abstract

The support and development of the primary agri-food sector is receiving increasing attention. The complexity of modern farming issues has lead to the widespread penetration of Integrated Pest Management (IPM) Decision Support Systems (DSS). IPM DSSs are heavily dependent on numerous conditions of the agro-ecological environment used for cultivation. To test and validate IPM DSSs, permanent crops, such as olive cultivation, are very important, thus this work focuses on the pest that is most potentially harmful to the olive tree and fruit: the olive fruit fly. Existing research has indicated a strong dependency on both temperature and relative humidity of the olive fruit fly’s population dynamics but has not focused on the localised environmental/climate conditions (microclimates) related to the pest’s life-cycle. Accordingly, herein we utilise a collection of a wide-range of integrated sensory and manually tagged datasets of environmental, climate and pest information. We then propose an effective and efficient two-stage assignment of sensory records into clusters representing microclimates related to the pest’s life-cycle, based on statistical data analysis and neural networks. Extensive experimentation using the two methods was applied and the results were very promising for both parts of the proposed methodology. The identified microclimates in the experimentation were shown to be consistent with intuitive and real data collected in the field, while their qualitative evaluation also indicates the applicability of the proposed method to real-life uses.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3