The Changes in Rhizosphere Metabolome and Microbiota Are the Main Direct Obstacles to Continuous Cropping in Tobacco (Nicotiana tabacum L.)

Author:

Yu Fei1,Yan Yifeng1,Dong Qing1,Jiang Chaoqiang1,Zu Chaolong1,Shen Jia1

Affiliation:

1. Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China

Abstract

Continuous cropping obstacles (CC), typical of negative plant–soil feedback, have become a non-negligible constraint to the development of agriculture. In order to investigate the main direct drivers influencing the formation of CC soils from the rhizosphere of CC, tobacco fields were collected and their physicochemical properties, microbial community, and metabolomics were measured and analyzed. We also built a mixed linear model to evaluate the impact of these factors on CC. The results suggested that the pH, available potassium (AK), and zinc (Zn) were significantly higher in CC than in normal tobacco (NOR). However, the content of available nitrogen (AN) decreased significantly. Alpha diversity of the bacterial community was significantly reduced. Bacterial community structure also varied significantly in CC. The study identified an ecological cluster with a significant negative correlation with the above-ground biomass of plants. In this cluster, the pathogenic microbiome increased and the beneficial microbiome decreased. The orthogonal partial least squares discriminant analysis (OPLS-DA) indicated clear variations in the metabolomic profiles of the rhizosphere soil between the CC and the NOR. There was an accumulation of toxic compounds and a decrease of beneficial compounds in rhizosphere soils with CC. The mixed linear model showed that only microbiome and metabolites, rather than the soil’s physicochemical properties, significantly affected plant above-ground biomass. According to the model’s standardized coefficients, metabolites contributed more to the continuous crop obstacles than the microbial community. The soil’s physicochemical properties do not directly cause the emergence of CC. The allelochemicals and microbial community are the main direct obstacles to continuous cropping in tobacco, and allelochemicals contribute more than the microbial community.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3