Phytotoxic Effects of Retentates Extracted from Olive Mill Wastewater Suggest a Path for Bioherbicide Development

Author:

Popolizio StefanoORCID,Fracchiolla MarianoORCID,Leoni Beniamino,Cazzato EugenioORCID,Camposeo SalvatoreORCID

Abstract

The aim of this study was to screen the phytotoxicity of different retentates concentrated in polyphenols and extracted from olive mill wastewater (OMW), namely, nano filtration retentate (RNF) and inverse osmosis retentate (ROI). The activity of both retentates was evaluated using bioassays on dry seeds (with concentrations of 0.0, 0.1, 0.5, 1.0, 5.0, and 10.0% and compared with CaCl2 solutions to evaluate the salinity effects), on germinated seeds (with concentrations of 0.0, 5.0, and 10.0%), and on the emergence of seedlings from the soil (with concentrations of 0.0, 5.0, and 10.0%). Three indicator plant species were used: Lepidium sativum L. (cress), Solanum lycopersicum L. (tomato), and Triticum turgidum subsp. durum Desf. (durum wheat). The results were expressed as the germination rate or emergence rate (GR or ER, respectively) and as the average germination time or average emergence time (AGT or AET, respectively) depending on the bioassays. Salinity showed a certain effect on the GR. Total or near-total inhibition of germination was obtained with the highest concentrations (5.0–10.0%). The dose of 1.0% of RNF and that of 0.5% of ROI caused delays in the germination of cress. The germination of tomato was delayed by RNF and ROI at concentrations of 0.5% and 1.0%. The AGT of durum wheat was not affected by RNF, but was slightly affected by ROI. The development of the seedlings was inhibited by both retentates. The results in the Petri dishes were also confirmed in pots. Retentates could be evaluated as a basis for the development of bioherbicides.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3