Bioenergy from Periodically Waterlogged Cropland in Europe: A First Assessment of the Potential of Five Perennial Energy Crops to Provide Biomass and Their Interactions with Soil

Author:

Ruf ,Audu ,Holzhauser ,Emmerling

Abstract

Harvesting of silage maize in late autumn on waterlogged soils may result in several ecological problems such as soil compaction and may subsequently be a major threat to soil fertility in Europe. It was hypothesized that perennial energy crops might reduce the vulnerability for soil compaction through earlier harvest dates and improved soil stability. However, the performance of such crops to be grown on soil that are periodically waterlogged and implications for soil chemical and microbial properties are currently an open issue. Within the framework of a two-year pot experiment we investigated the potential of the cup plant (Silphium perfoliatum L.), Jerusalem artichoke (Helianthus tuberosus), giant knotweed (Fallopia japonicum × bohemica), tall wheatgrass (Agropyron elongatum), and reed canary grass (Phalaris arundinacea) for cultivation under periodically waterlogged soil conditions during the winter half year and implications for soil chemical and biological properties. Examined perennial energy crops coped with periodical waterlogging and showed yields 50% to 150% higher than in the control which was never faced with waterlogging. Root formation was similar in waterlogged and non-waterlogged soil layers. Soil chemical and microbial properties clearly responded to different soil moisture treatments. For example, dehydrogenase activity was two to four times higher in the periodically waterlogged treatment compared to the control. Despite waterlogging, aerobic microbial activity was significantly elevated indicating morphological and metabolic adaptation of the perennial crops to withstand waterlogged conditions. Thus, our results reveal first evidence of a site-adapted biomass production on periodical waterlogged soils through the cultivation of perennial energy crops and for intense plant microbe interactions.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3