Estimation of Relative Chlorophyll Content in Spring Wheat Based on Multi-Temporal UAV Remote Sensing

Author:

Wu Qiang,Zhang Yongping,Zhao Zhiwei,Xie Min,Hou Dingyi

Abstract

Relative chlorophyll content (SPAD) is an important index for characterizing the nitrogen nutrient status of plants. Continuous, rapid, nondestructive, and accurate estimation of SPAD values in wheat after heading stage can positively impact subsequent nitrogen fertilization management strategies, which regulate grain filling and yield quality formation. In this study, the estimation of SPAD of leaf relative chlorophyll content in spring wheat was conducted at the experimental base in Wuyuan County, Inner Mongolia in 2021. Multispectral images of different nitrogen application levels at 7, 14, 21, and 28 days after the wheat heading stage were acquired by DJI P4M UAV. A total of 26 multispectral vegetation indices were constructed, and the measured SPAD values of wheat on the ground were obtained simultaneously using a handheld chlorophyll meter. Four machine learning algorithms, including deep neural networks (DNN), partial least squares (PLS), random forest (RF), and Adaptive Boosting (Ada) were used to construct SPAD value estimation models at different time from heading growth stages. The model’s progress was evaluated by the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAPE). The results showed that the optimal SPAD value estimation models for different periods of independent reproductive growth stages of wheat were different, with PLS as the optimal estimation model at 7 and 14 days after heading, RF as the optimal estimation model at 21 days after heading, and Ada as the optimal estimation model at 28 d after heading. The highest accuracy was achieved using the PLS model for estimating SPAD values at 14 d after heading (training set R2 = 0.767, RMSE = 3.205, MAPE = 0.060, and R2 = 0.878, RMSE = 2.405, MAPE = 0.045 for the test set). The combined analysis concluded that selecting multiple vegetation indices as input variables of the model at 14 d after heading stage and using the PLS model can significantly improve the accuracy of SPAD value estimation, provides a new technical support for rapid and accurate monitoring of SPAD values in spring wheat.

Funder

National Natural Science Foundation of China

Inner Mongolia science and Technology program project

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference50 articles.

1. Research on Accuracy and Stability of Inversing Vegetation Chlorophyll Content by Spectral Index Method;Jiang;Spectrosc. Spectr. Anal.,2015

2. Estimation Method of Wheat Canopy Chlorophyll Based on Information Entropy Feature Selection;Yuan;Trans. Chin. Soc. Agric. Mach.,2022

3. Estimation of the leaf area index and chlorophyll content of wheat using UAV multi-spectrum images;Liu;Trans. Chin. Soc. Agric. Eng.,2021

4. Inversion of chlorophyll and leaf area index for winter wheat based on UAV image segmentation;Deng;Trans. Chin. Soc. Agric. Eng.,2022

5. Estimation of canopy chlorophyll in potato based on UAV hyperspectral images;Yi;J. Plant Nutr. Fertil.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3