Grain Dehydration Characteristics of Old and Modern Maize Hybrids and Their Response to Different Planting Densities

Author:

Guo HuaihuaiORCID,Yu Xiaofang,Gao Julin,Ma Daling,Hu Shuping,Wang Xian

Abstract

High grain water content at harvest stage is the main limiting factor for realizing mechanized maize grain harvest in China. Under the background of yield gain by density increase, it is necessary to clarify the effect of planting density increase on maize grain dehydration characteristics, which would provide theoretical support for realizing mechanized grain harvest under high planting density conditions. Therefore, this study selects five main hybrids, ZD2, DY13, YD13, XY335, and DH618, released in different eras that were widely promoted in Inner Mongolia from the 1970s to 2010s. The experiment was conducted in the Chilechuan Modern Agriculture Expo Park, Tumed Right Banner, Baotou city, Inner Mongolia, in 2018 and 2019. Under the three densities of 45,000 plants ha−1 (low density), 75,000 plants ha−1 (medium density) and 105,000 plants ha−1 (high density), the indexes of grain dehydration, leaf stay-green, bract and cob dehydration of the different maize hybrids were measured and analyzed. The results show that MCpm (moisture content at physiological maturity) of hybrids in the 1970s and 1990s was significantly reduced by 1.57 and 1.14 percentage points, respectively, and MCh (moisture content at harvest time) in the harvest period of hybrids in the 1970s was significantly reduced by 0.99 percentage points, from a low to medium density. The GDRbm (rate of grain dehydration before maturation) and the GDRam (rate of grain dehydration after maturation) showed an increasing trend from a low to medium density. From a medium to high density, the MCpm from the 1980s to 2000s could be significantly reduced by 1.78, 1.53 and 1.88 percentage points; the MCh from the 1980s could be significantly reduced by 1.77 percentage points; and the GDRbm from the 1970s was significantly increased by 0.101%/d, but the improvement of GDRam was not significant. With the planting density increase, the decreased ratios of relative GLAD (green leaf area duration) and leaf SPAD (soil and plant analyzer development) per plant of old maize hybrids were more than that of modern maize hybrids, which promoted the decrease in grain water content and the rate increase in grain dehydration for old maize hybrids. There was a direct positive correlation between the bract and grain dehydration rates, but the cob dehydration rate had no significant effect on the grain dehydration rate. With the increase in planting density, the relative GLAD and leaf SPAD values of plants decreased, and the stay-green of plants worsened, and a significant increase in the dehydration rate of bracts in old and modern eras was an important reason for the decrease in grain moisture content and increase in dehydration rate.

Funder

Science & Technology Innovation Projects for High Yield and Efficiency of Grain

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3