KNO3, Nano-Zn, and Fe Foliar Application Influence the Growth and Physiological Responses of Aloe vera under Salinity

Author:

Ebrahimzadeh Asghar,Ghorbanzadeh Soraya,Vojodi Mehrabani Lamia,Sabella ErikaORCID,De Bellis LuigiORCID,Hassanpouraghdam Mohammad BagherORCID

Abstract

Aloe vera L. is a perennial drought-tolerant plant that is commonly used in the pharmaceutical, food, and cosmetic industries. To evaluate the effects of the foliar application of KNO3, nano-Zn, and Fe (0 and 2 mgL−1) on Aloe vera plants under NaCl salinity stress (0, 50, 100 mM), a factorial experiment was conducted based on a completely randomized design. The results revealed that foliar applications influenced the root dry weight. The chlorophyll b content was affected by the salinity plus the foliar application. The total soluble solids content, chlorophyll a, phenolics, and flavonoids of the leaves, the gel content, catalase and superoxide dismutase activity, malondialdehyde, proline, and mineral nutrients content were impacted by the treatments as well. The highest values for the gel content (0.37 g per leaf) and plant dry weight (13.1 g per pot) were recorded at 0 mM NaCl + KNO3 + nano-Fe. The top K/Na ratio (35.2), and the largest K (69 g kg−1), P (6.6 g kg−1), Ca (31 g kg−1), and Mg (2.5 g kg−1) contents were recorded after the 0 mM NaCl + KNO3 treatment. The highest Fe content (383 g kg−1) was observed with 0 mM NaCl + nano-Fe treatment, and the maximum Zn content (37.6 mg kg−1) was measured after the 0 mM NaCl + nano Zn treatment. One hundred mM NaCl increased the malondialdehyde and Na contents. The largest amount of catalase activity was measured after the 50 mM NaCl + KNO3 + nano-Zn treatment. Salinity stress had adverse effects on the growth and physiological responses of Aloe vera. However, the foliar application of KNO3, nano-Zn and Fe mitigated the damaging effects of salinity. The results from more detailed studies would be advisable for pioneer farmers and the agricultural sector.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3