Strengthened Assimilate Transport Improves Yield and Quality of Super Rice

Author:

Chen TingtingORCID,Yang Xueqin,Fu Weimeng,Li Guangyan,Feng Baohua,Fu Guanfu,Tao Longxing

Abstract

Rice varieties with ultra-high yields play an important role in grain production and global food security. However, little information is available on the source–sink relationships that underpin the grain quality and ultra-high-yield properties. Photosynthesis, carbohydrate accumulation and allocation, vascular bundle morphology, and nutrient uptake and characteristics were, therefore, compared in two ‘super rice’ varieties: Yongyou9 (control) and Yongyou12 (ultra-high yield) that differ in grain production. Yongyou12 had a significantly higher (18.8–21.4%) grain yield than Yongyou9, together with a substantial improvement in appearance-related qualities. The total dry weight and the ratio of panicle dry weight to total dry weight were significantly higher in Yongyou12 than Yongyou9, suggesting that the improved seed traits were related to higher assimilate accumulation and allocation in the ultra-high-yield variety. Yongyou12 had larger vascular bundles and greater numbers of vascular bundles in the panicle-neck internode, as well as higher levels of SUT1, SUT2, and CIN2 transcripts in the grains than Yongyou9. The contents of nitrogen, phosphorous, and potassium were similar in Yongyou12 and Yongyou9. We concluded that assimilate transport and nutrient utilization efficiency are the main factors underlying the higher yield and quality traits of the super rice variety Yongyou12.

Funder

the Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference54 articles.

1. Genomic Breeding of Green Super Rice Varieties and Their Deployment in Asia and Africa

2. Globle Report on Food Crises 2020. FSIN 2020. Rome https://www.fsinplatfom.org

3. Food Security: The Challenge of Feeding 9 Billion People

4. The science of food security

5. OECD-FAO Agricultural Outlook 2020–2029,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3