Long-Term Zinc Fertilization in Calcareous Soils Improves Wheat (Triticum aestivum L.) Productivity and Soil Zinc Status in the Rice–Wheat Cropping System

Author:

Lakshmi Pepakayala Vara,Singh Santosh Kumar,Pramanick Biswajit,Kumar Mukesh,Laik Ranjan,Kumari Aradhna,Shukla Arvind K.,Abdel Latef Arafat Abdel HamedORCID,Ali Omar M.,Hossain AkbarORCID

Abstract

Rice–wheat cropping system (RWCS) is considered as the furthermost vital system in the Indo-Gangetic Plains of South-Asia, including India, Pakistan, Bangladesh, and Nepal. Recently, the deficiency of micronutrients like zinc (Zn) has emerged as one of the prime limitations for the sustainability issues of this RWCS in Zn deficient calcareous soils, particularly in India, as a result of the calcareous typic ustifluvents taxonomic nature of the soils. Therefore, a new Zn fertilization approach for soils is very much needed in the intensive RWCS. Thus, a six-year-long investigation was designed with three different modes of Zn application, viz., the application of Zn only in the first year of study, application in alternative years, and application in every year. Four different rates of Zn applications in a hectare of area for a single year, viz., 2.5, 5.0, 7.5, and 10 kg ha−1 year−1, and times of Zn application, viz., only at first year, alternative years, and in each year. The major aims of the study were to determine Zn concentration in soil; yield; and Zn accumulation by wheat crop under different application methods of Zn. From this study, it was found that a large portion of the applied Zn was present in the residual fraction, and it was also revealed that increasing the frequency of Zn application resulted in the increment in the crystalline fraction. Significant correlation of water-soluble and exchangeable Zn (WS+EX-Zn), complexed Zn (COM-Zn), amorphous Zn (AMO-Zn), organic Zn (ORG-Zn), total Zn (TOT-Zn), grain yield, and grain Zn uptake by wheat indicated that these Zn fractions were dominant forms in the soil to be utilized by plants under rice–wheat rotation. Concerning yield and Zn uptake by wheat, it was noted that the Zn application at 10 kg ha−1 in alternate years was the best Zn application method, while application of Zn at 7.5 kg ha−1 in each year also resulted in comparable yield.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3