Effect of Biochar Particle Size on Physical, Hydrological and Chemical Properties of Loamy and Sandy Tropical Soils

Author:

de Jesus Duarte SaraORCID,Glaser BrunoORCID,Pellegrino Cerri CarlosORCID

Abstract

The application of biochar is promising for improving the physical, chemical and hydrological properties of soil. However, there are few studies regarding the influence of biochar particle size. This study was conducted to evaluate the effect of biochar size on the physical, chemical and hydrological properties in sandy and loamy tropical soils. For this purpose, an incubation experiment was conducted in the laboratory with eight treatments (control (only soil), two soils (loamy and sandy soil), and three biochar sizes (<0.15 mm; 0.15–2 mm and >2 mm)). Analyses of water content, bulk density, total porosity, pore size distribution, total carbon (TC) and total N (TN) were performed after 1 year of soil–biochar-interactions in the laboratory. The smaller particle size <0.15 mm increased water retention in both soils, particularly in the loamy soil. Bulk density slightly decreased, especially in the loamy soil when biochar > 2 mm and in the sandy soil with the addition of 0.15–2 mm biochar. Porosity increased in both soils with the addition of biochar in the range of 0.15–2 mm. Smaller biochar particles shifted pore size distribution to increased macro and mesoporosity in both soils. Total carbon content increased mainly in sandy soil compared to control treatment; the highest carbon amount was obtained in the biochar size 0.15–2 mm in loamy soil and <0.15 mm in sandy soil, while the TN content and C:N ratio increased slightly with a reduction of the biochar particle size in both soils. These results demonstrate that biochar particle size is crucial for water retention, water availability, pore size distribution, and C sequestration.

Funder

CNPQ

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3