Ultrasonic Treatment Enhances Germination and Affects Antioxidant Gene Expression in Soybean (Glycine max L. Merr)

Author:

Alfalahi Ayoob ObaidORCID,Alobaidy Bushra Shaker,Almarie Ahmed Abdulwahid,Dhanoon Omar Mahmood,Qasem Jamal Ragheb,Almehemdi Ali Fadaam,Najda AgnieszkaORCID

Abstract

Ultrasound technology has been recently used to enhance and increase seed germination with no negative effect on seedling development. This study investigated the effects of ultrasound exposure for 10, 20, and 30 min on seed germination, seedling growth, and gene expression of three soybean varieties grown under glasshouse conditions. Ultrasonic treatments showed different effects on most of the studied traits compared with the untreated controls. Ultrasonic exposure increased germination percentage, root and shoot lengths, seedling dry matter, and vigor index of the three soybean varieties. Antioxidant gene expression was examined in the seedling tissues and indicated a significant stimulatory effect of ultrasonication on catalase and superoxide dismutase antioxidant gene expression. Scanning electron microscopy results showed multiple changes in soybean varieties. Seed coat rupturing appeared as pores and cracks on the waved seed coat and possibly increased seed germination. Soybean varieties revealed different abilities to germinate, grow, and develop, as well as different antioxidant gene expression in response to ultrasound treatments. In light of the results obtained, ultrasonication can be widely used to include other crops that face serious challenges in germination.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3