Soil Greenhouse Gas Emissions in Different Pastures Implemented as a Management Strategy for Climate Change

Author:

Alfaro MartaORCID,Hube SaraORCID,Salazar Francisco,Beltrán IgnacioORCID,Rodriguez Marion,Ramírez Luis,Saggar Surinder

Abstract

The increase in global average temperature has significant implications for food security and agriculture production. Grass species adapted to new climate scenarios are essential for the success of livestock production. The aim of this study was to evaluate different forage species, providing animal feed during critical dry periods as an adaptation strategy for livestock grazing systems, and its implications for greenhouse gas (GHG) emissions. The field experiment was conducted during September 2015 to September 2017, with four treatments (n = 5, completely randomized block design), including two perennial forages, Bromus valdivianus (Bromus), Lotus corniculatus (Lotus), alone and in a mixture pasture (Br/L). As a control treatment, the forage species commonly seeded by the farmer was used (hybrid ryegrasses + Oat, Control). One-half of the plots was used for nitrous oxide (N2O) and methane (CH4) measurements, and the remaining half for destructive soil and forage sampling. Gas fluxes were measured using the static chambers technique. Cumulative emissions of N–N2O, C–CH4 and CO2−eq were not affected by treatments, averaging 1.7 kg N–N2O ha−1, 3.2 kg C–CH4 ha−1 and 635.5 kg CO2 ha−1, respectively (p > 0.05). However, emission intensity tended to be lower for Br/L compared with other treatments (p = 0.06) during the second year, while pasture yield was greater for Br/L (p < 0.05). The control showed a greater average pasture yield (first and second years) compared to other treatments, with the highest metabolizable energy and the lowest crude protein content. Our results suggest that a mix pasture Br/L as a management strategy would promote farm adaptation, given that it favors pasture yield at critical dry periods during the year. This inclusion also reduces N–N2O emissions from grassland soils as well as favoring C–CH4 capture. Our study determined that N–N2O and C–CH4 emissions were regulated by soil variables, mainly soil moisture and soil temperature. Extension and knowledge transfer should be provided to farmers to account for potential adoption barriers, such as low short-term yield.

Funder

Fondo Tecnológico Agropecuario

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference53 articles.

1. Food Security Under Climate Change

2. Measuring resilience and assessing vulnerability of terrestrial ecosystems to climate change in South America

3. Climate Change and Water;Bates,2008

4. Changes in the rainfall regime along the extratropical west coast of South America (Chile): 30–43° S;Quintana;Atmósfera,2012

5. Central and South America;Magrin,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3