Improving Soil Fertility and Wheat Yield by Tillage and Nitrogen Management in Winter Wheat–Summer Maize Cropping System

Author:

Cui Haixing12,Luo Yongli12,Li Chunhui12,Chang Yonglan12,Jin Min12,Li Yong12,Wang Zhenlin12

Affiliation:

1. College of Agronomy, Shandong Agricultural University, Tai’an 271018, China

2. State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China

Abstract

Soil degradation and high environmental costs impede agricultural production in North China. A 6-year field experiment was conducted to determine the effects of tillage practice and nitrogen application rate on changes in soil fertility and wheat yield. Four tillage systems (rotary tillage without maize straw return through 6 years, RT; rotary tillage with maize straw return through 6 years, RS; deep tillage with maize straw return through 6 years, DS; and rotary tillage through 2 years followed by deep tillage next year with maize straw applied for two cycles, RS/DS) and three N levels (HN, 300 kg N ha−1, refers to traditional farming practice; MN, 0.75 × HN, 225 kg N ha−1, to recommended N rate; and LN, 0.5 × HN, 150 kg N ha−1, to reduced N rate) were tested. The soil organic carbon, labile organic carbon, inorganic N, available phosphorus, and available potassium under straw return treatments were significantly higher than RT in the 0–30 cm soil layer (p < 0.05). The microbial diversity, invertase, urease, and alkaline phosphatase activities also increased when maize straw was returned. Tillage practices could distribute maize straw in different depths of the soil and then affect soil nutrients, enzyme activity, and microbial diversity. The RS treatment presented the greatest effects in the 0–10 cm layer, while more significant impacts were observed in DS and RS/DS treatments at the 10–30 cm depths. The levels of soil nutrients and enzyme activity increased with an increased N rate. Compared to that under LN, wheat yields increased under HN and MN treatments, whereas there were no significant differences between HN and MN (p > 0.05). An increasing tendency of grain yield was observed in DS and RS/DS, while conversely so in RS. RS/DS had lower farm costs than DS during the study duration. Thus, RS/DS at 225 kg N ha−1 is the best method for improving soil fertility and wheat yield.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Shandong Mount Tai Program for Industrial Leading Talents

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference66 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3