Asynchronous Synergetic Remediation Strategy for Cd-Contaminated Soil via Passivation and Phytoremediation Technology

Author:

Cao Jian12,Lv Chenyang12,Zhang Chenxu12,Yin Fengxiang12,Gao Zhengbo3,Wei Long4,Wang Lichang4ORCID

Affiliation:

1. School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China

2. Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, Central South University, Changsha 410083, China

3. School of Marxism, Central South University, Changsha 410083, China

4. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

Abstract

Cadmium (Cd) contamination in soil has emerged as a significant challenge for agricultural production. Phytoremediation and passivation are key techniques for remediating Cd-contaminated soil. However, few studies have focused on the synergistic effects of these two techniques. In this work, the effectiveness of synergetic remediation strategies, both synchronous and asynchronous, utilizing passivation and phytoremediation techniques, was explored. The results of pot experiments and field experiments indicated that optimal remediation effects were obtained by asynchronous synergetic remediation, removing over 80% of bioavailable Cd within 14 days. Mechanistic studies conducted using XPS analysis, soil property analysis, and microbial diversity analysis confirmed that the chelation effect of SDD and soil pH value are the primary factors contributing to the effectiveness of both remediation strategies. In contrast, the variations in microbial populations are identified as the crucial factors influencing the varying outcomes of the two sequential remediation approaches. This research demonstrates that asynchronous synergistic remediation is a promising strategy for mitigating Cd contamination in soil.

Funder

Science and Technology Innovation Program of Hunan Province

International and Regional Science and Technology Cooperation and Exchange Program of the Hunan Association for Science and Technology

Natural Science Foundation of China

Science and Technology Innovation Program of Hunan Province of China

Science and Technology Program of Changsha of China

Research Foundation of the Department of Natural Resources of Hunan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3