Improved Prediction of Leaf Emergence for Efficacious Crop Protection: Assessing Field Variability in Phyllotherms for Upper Leaves in Winter Wheat and Winter Barley

Author:

El Jarroudi MoussaORCID,Kouadio LouisORCID,Junk JürgenORCID,Bock Clive H.

Abstract

The choice of the phyllotherm value for predicting leaf emergence under field conditions is pivotal to the success of fungicide-based disease risk management in temperate cereals. In this study, we investigated phyllotherm variability for predicting the emergence of the three uppermost leaves (i.e., three last leaves to emerge) in winter wheat and winter barley fields. Data from four sites representative of wheat and barley growing regions in Luxembourg were used within the PROCULTURE model to predict the emergence of F-2, F-1 and F (F being the flag leaf) during the 2014–2019 cropping seasons. The phyllotherms tested ranged between 100 °Cd and 160 °Cd, in 15 °Cd steps, including the current default value of 130 °Cd. The comparisons between the observed and predicted emerged leaf area were qualitatively evaluated using the mean absolute error (MAE), the root mean square error (RMSE) and Willmott’s index (WI). A phyllotherm of 100 °Cd accurately and reliably predicted the emergence of all three upper leaves under the various environmental conditions and crop cultivars of winter wheat and winter barley over the study period. MAE and RMSE were generally <5% and the WI values were most often ≥0.90 for F-1 and F. For phyllotherm values ≥115 °Cd, the prediction errors generally increased for F-1 and F, with MAE and RMSE exceeding 20% in most cases. F-2 agreement between observed and predicted values was generally similar when using 100 °Cd or 115 °Cd. These results tie in valuable, complementary information regarding the variability of phyllotherms within leaf layers in winter wheat and winter barley in Luxembourg. Accurate and reliable leaf emergence prediction from F-2 to F allows for timely fungicide application, which ensures lasting protection against infections by foliar fungal disease pathogens. Hence, understanding phyllotherms can help ensure timely, environmentally sound, and efficacious fungicide application while increasing the likelihood of improved yields of winter wheat and winter barley.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3