Effects of Nitrogen and Water Deficiency on Agronomic Properties, Root Characteristics and Expression of Related Genes in Soybean

Author:

Hoffmann Borbála,Varga Balázs,Nagy Erzsébet,Hoffmann Sándor,Darkó Éva,Tajti Judit,Janda Tibor

Abstract

Drought and insufficient nutrient supply are the main limiting factors for field crop production; therefore, the present study aimed to investigate the responses of four registered soybean varieties to limited nitrogen (N) supply in combination with drought stress. Plants were grown in tubes filled with silica sand, under open-air conditions. Water shortage was initiated at the three-leaf stage by providing 50% of water, and N deficiency was obtained by reducing the N content of the half-strength Hoagland solution by 50%. N deficiency did not influence the grain yield, while it significantly increased the root dry biomass in Boglár and Pannónia Kincse. Compared with nitrogen supply, the effects of the water shortage were dominant in root development. The expression levels of the investigated genes also showed genotypic variations. The expression of the Inducible nitrate reductase1 gene increased under N-deficient conditions in Boglár and decreased in Pannónia Kincse under drought conditions. The expression level of the aldehyde dehydrogenase gene and abscisic acid 8’-hydroxylase 3 increased under combined stress conditions. Summarising the agronomic and physiological characteristics, Boglár and Sinara were sensitive to drought, Bagera was sensitive to N deficiency but produced the highest yield under limited watering in each nitrogen treatment, while Pannónia Kincse was tolerant to nitrogen deficiency under well-watered conditions.

Funder

Magyarország Kormánya

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference47 articles.

1. Oilcrops Complex Policy Changes and Industry Measures. Annual Compendium,2020

2. Faostathttp://www.fao.org/faostat/en/#data

3. Improving Seed Quality of Soybean Suitable for Growing in Europe;Sudarić,2020

4. Evaluation of Elite Southern Maturity Soybean Breeding Lines for Drought‐Tolerant Traits

5. Evaluation of high yielding soybean germplasm under water limitation;Prince;J. Integr. Plant Biol.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3