Automatic Estimation of Apple Orchard Blooming Levels Using the Improved YOLOv5

Author:

Chen Zhaoying,Su Rui,Wang YuliangORCID,Chen Guofang,Wang Zhiqiao,Yin Peijun,Wang Jinxing

Abstract

The estimation of orchard blooming levels and the determination of peak blooming dates are very important because they determine the timing of orchard flower thinning and are essential for apple yield and quality. In this paper, we propose an orchard blooming level estimation method for global-level and block-level blooming level estimation of orchards. The method consists of a deep learning-based apple flower detector, a blooming level estimator, and a peak blooming day finding estimator. The YOLOv5s model is used as the apple flower detector, which is improved by adding a coordinate attention layer and a small object detection layer and by replacing the model neck with a bidirectional feature pyramid network (BiFPN) structure to improve the performance of the apple flower detector at different growth stages. The robustness of the apple flower detector under different light conditions and the generalization across years was tested using apple flower data collected in 2021–2022. The trained apple flower detector achieved a mean average precision of 77.5%. The blooming level estimator estimated the orchard blooming level based on the proportion of flowers detected at different growth stages. Statistical results show that the blooming level estimator follows the trend of orchard blooming levels. The peak blooming day finding estimator successfully positioned the peak blooming time and provided information for the flower thinning timing decision. The method described in this paper is able to provide orchardists with accurate information on apple flower growth status and is highly automated.

Funder

National Key Research and Development Project

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3