Effects of Straw and Biochar Amendments on Grassland Productivity and Root Morphology

Author:

Głąb TomaszORCID,Gondek KrzysztofORCID,Mierzwa-Hersztek MonikaORCID,Szewczyk Wojciech

Abstract

The objective of this research was to determine the effect of straw and biochar amendment on the root system morphology and aboveground biomass of a red clover/grass mixture (Lolium. perenne L., Phleum pratense L., Festuca pratensis Huds., F. arundinacea Schreb., L. multiflorum L., L. westerwoldicum Breakw., Trifolium pratense L.). A grassland experiment was conducted from 2014 to 2018. Straw was collected from miscanthus (Miscanthus × giganteus), winter wheat (Triticum aestivum L.), and biochar was produced from the biomass of those species. The following treatments were applied: wheat straw at a rate of 5 t ha−1 (WS), miscanthus straw at a rate of 5 t ha−1 (MS), wheat biochar at a rate of 5 t ha−1 (WBH), wheat biochar at a rate of 2.25 t ha−1 (WBL), miscanthus biochar at a rate of 5 t ha−1 (MBH), and miscanthus biochar at a rate of 2.25 t ha−1 (MBL). A treatment with mineral fertilizer but without organic amendments (MCTR) was used, and a control treatment (CTR) without mineral fertilizer and without any amendments was also tested. The botanical composition and the aboveground yields were determined. The roots were sampled in 2018, and the root morphology parameters were determined using an image analysis system. The applied soil amendments resulted in increased root lengths, surface areas, volumes, and mean root diameters. There were no differences between the treatments with different feedstock types (miscanthus vs. wheat), materials (straw vs. biochar), or amendment rates (5 vs. 2.25 t ha−1). The resulting root system characteristics were reflected in the aboveground biomass productivity. The soil amendments, i.e., the straw and biochar, significantly increased the productivity in comparison to that of the control treatment. However, these differences were noticed only during the first and second cuts. Recommended practice in grassland management is to improve soil with straw. The conversion of straw into biochar does not provide a better effect on grassland productivity.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3