Abstract
Drought stress is a serious threat. Therefore, improvements in crop productivity under conditions of limited water availability are vital to keep global food security. Apples and cherries belong to the most produced fruit worldwide. Thus, searching for their tolerant or resistant cultivars is beneficial for crop breeders to produce more resistant plants. We studied five apple (“Malinové holovouské”, “Fragrance”, “Rubinstep”, “Idared”, “Car Alexander”) and five cherry (“Regina”, “Napoleonova”, “Kaštánka”, “Sunburst”, “P-HL-C”) cultivars for their adaptation in response to progressive drought stress. The reaction of an in vitro culture to osmotic stress simulated by increasing polyethylene glycol (PEG) concentration in medium was evaluated through the morphological (fresh and dry weight, water content, leaf area), physiological (chlorophyll and carotenoids content), and biochemical (reactive oxygen species and malondialdehyde content) parameters. Drought-like stress negatively affected the water content, leaf areas, and chlorophyll content in both fruit species. Oxidative status and membrane damage of plants under water deficiency conditions occurred to be important indicators of stress tolerance mechanism. Cherries exhibited higher hydrogen peroxide levels compared to apples, whereas their malondialdehyde values were generally lower. The overall results indicated wide tolerance range to water deficit among apple and cherry in vitro culture as well as among cultivars within single plant species.
Subject
Agronomy and Crop Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献