Accurate Phenotypic Identification and Genetic Analysis of the Ear Leaf Veins in Maize (Zea mays L.)

Author:

Guo Shangjing1,Zhu Mingyi12,Du Jianjun2,Wang Jinglu2,Lu Xianju2,Jin Yu2,Zhang Minggang2,Guo Xinyu2,Zhang Ying2

Affiliation:

1. College of Agronomy, Liaocheng University, Liaocheng 252059, China

2. Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

Abstract

The ear leaf veins are an important transport structure in the maize "source" organ; therefore, the microscopic phenotypic characteristics and genetic analysis of the leaf veins are particularly essential for promoting the breeding of ideal maize varieties with high yield and quality. In this study, the microscopic image of the complete blade cross section was realized using X-ray micro-computed tomography (micro-CT) technology with a resolution of 13.5 µm. Moreover, the veins’ phenotypic traits in the cross section of the complete maize leaf, including the number of leaf veins, midvein area, leaf width, and density of leaf veins, were automatically and accurately detected by a deep-learning-integrated phenotyping pipeline. Then, we systematically collected vein phenotypes of 300 inbred lines at the silking stage of the ear leaves. It was found that the leaf veins’ microscopic characteristics varied among the different subgroups. The number of leaf veins, the density of leaf veins, and the midvein area in the stiff-stalk (SS) subgroup were significantly higher than those of the other three subgroups, but the leaf width was the smallest. The leaf width in the tropical/subtropical (TST) subgroup was the largest, but there was no significant difference in the number of leaf veins between the TST subgroup and other subgroups. Combined with a genome-wide association study (GWAS), 61 significant single-nucleotide polymorphism markers (SNPs) and 29 candidate genes were identified. Among them, the candidate gene Zm00001d018081 regulating the number of leaf veins and Zm00001d027998 regulating the midvein area will provide new theoretical support for in-depth analysis of the genetic mechanism of maize leaf veins.

Funder

the Construction of Collaborative Innovation Center of Beijing Academy of Agriculture and Forestry Science

Beijing Academy of Agriculture and Forestry Sciences Grants

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3